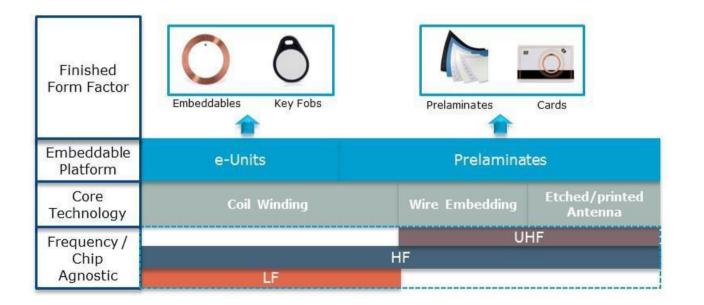


MCS Credential Components

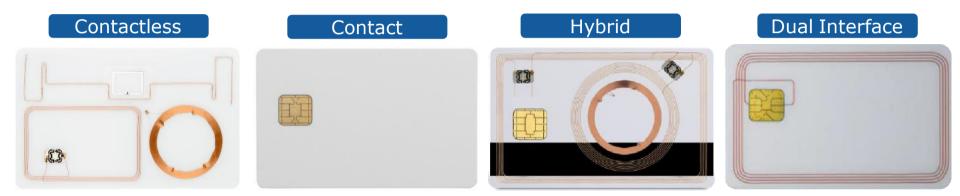
In association with our Malaysian manufacturing partner, MCS Microsystems offers a complete line of semi-finished, ready-to-use credential components to meet your custom National security needs

About us

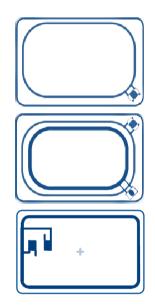


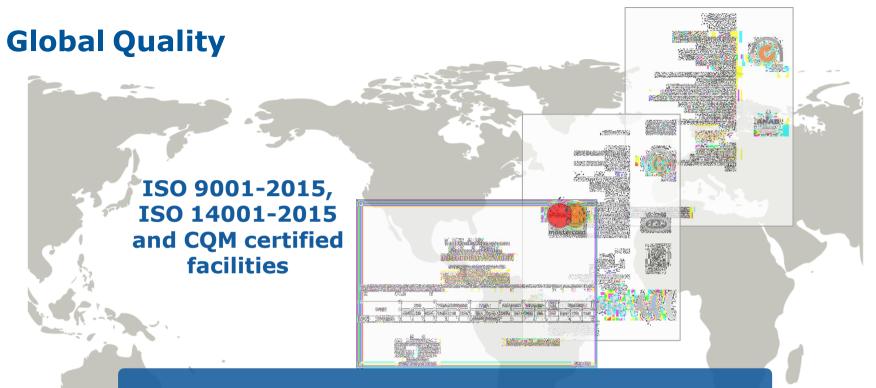
MCS MICROSYSTEMS SDN BHD

- Malaysian incorporated technology company.
- Developed the chip operating system for the first e-passport and multi-application national ID card in the world.
- Obtained Multimedia Super Corridor (MSC) status in September 1999
- Our mission is to provide emerging and adaptive technologies to meet challenges in the current environment.
- We collaborate with technology partners who are best-in-class to deliver leading edge designs.



Flexible Platforms





Terminology

- Single Technology: 1 chip/module + 1 antenna
- Combo: 2 chips/modules + 1 or 2 antennas
- Dual Interface Inlays: Antenna only for later placement of dual interface chip e.g. used for Visa, MC, Amex... cards

- Product design, development, manufacturing, delivery and service processes meet strict international standards for quality
- Validated systems for continuous improvement ensuring consistent quality and delivery performance

Channels to Market

Prelaminates

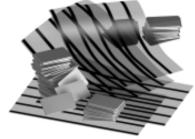
- Diversity of Materials : PVC, PETG, PC, Teslin[®], synthetic paper,
 Development in progress of "ecofriendly" alternatives such as 100% recycled PVC, recycled PET-G...
- Frequency and chip supplier agnostic
- Combinations of up to the 3 frequencies on the same position
- Customized to your format from A4 to king size; 6up to 80up, custom cards sizes: ID1, CR100, XXL, mini card...
- Various thicknesses from 150µm for DI antenna, 175µm for HF DBond[™]
- Colors options available with volume | upon demand
- Technology advantages:
 - Fully automated process
 - Wire embedding
 - Coil winding
 - DBond[™] Technology

Dual Interface prelaminate variant

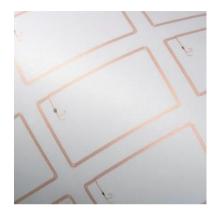
- Cu pads for physical connections thanks to:
 - ACF (anisotropic conductive film)
 - Mühlbauer flex bump or T-Connect
- Meanders pads for physical connections thanks to:
 - Mühlbauer flex bump or T-Connect
 - Conductive adhesive (NBS / Delo ...)
 - ACF
- Soldering wire connection:
 - Pulling of wires during milling process which are then soldered to module
- Coupling (SPS, IFX CoM)

Nour Technology Provide

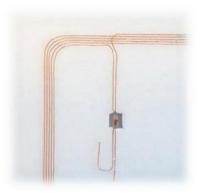
Modules must have their own antenna



Overlays


- Diversity of Materials : PVC, PETG, PC, laserable or not, with or without coating
- Up to 10 stripes
 - HiCo, Loco magnetic stripes, several stripes per row possible
 - Width of stripes from 1.3mm to 21.5mm width
- Stamped hologram to your format
 - 2D, 3D, holographic effects...
 - Design support with our partners
 - On surface for smooth card's touch after lamination or embedded hologram within card body's structure for higher security

Technology Highlights

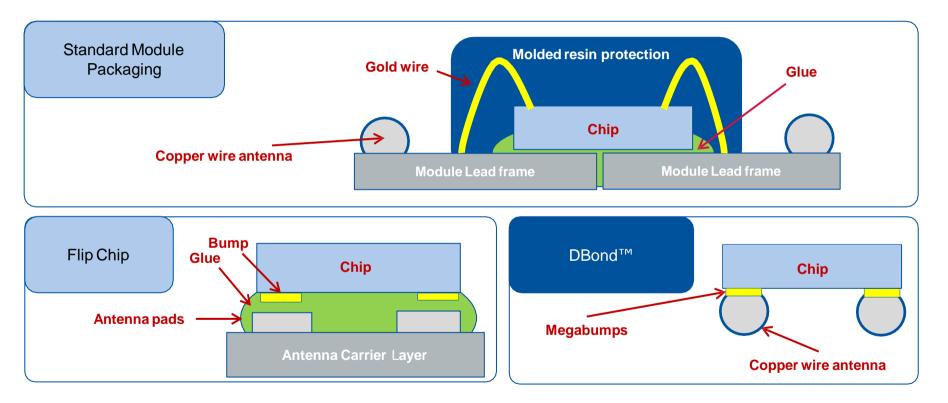

Direct Bonding Technology[™]

DBond™ Technology

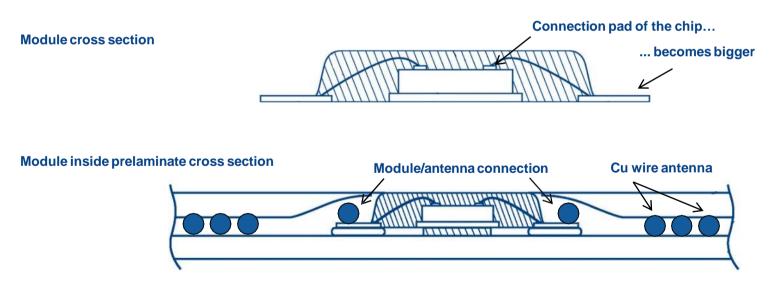
 DBond[™] (Direct Bonding) is a means to directly connect an RFID wire antenna to a microsized chip without the need for bulky module housing and without additional soldering material


Advantages of DBond™ Technology

- Thinner inlays for ISO Cards and Passports
 - Inlay thickness down to $170\mu m$ ($100\mu m$ or less chip thickness) compared to $\sim 260\mu m$ with modules ($200\mu m$ module thickness, MOX10)
 - Ultra-thin prelaminates allow adding more security features
 - Possibility to use same structures for DI & HF cards (raw material standardization)
- Excellent printability of ISO cards even with DTC printers


Modules can cause a slight deformation on card surface impacting print quality

- High durability due to fewer connections, increased robustness against bending
- Excellent RF performance thanks to copper wire antenna

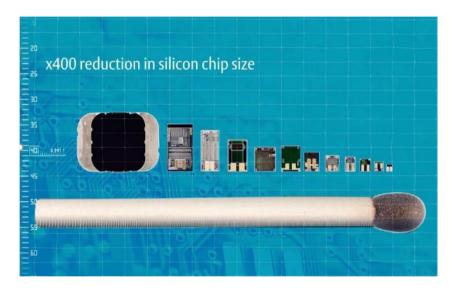

Bonding Technologies

How to Reduce Inlay Thickness (1 of 2)

- Inlay thickness is driven by module thickness
- Big module enlarges the connection pads of the chip, allowing an easier connection with the antenna

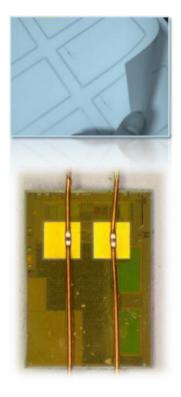
How to Reduce Inlay Thickness (2 of 2)

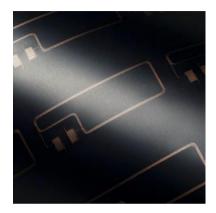
- Chip manufacturers are making thinner module: MOA2, NOA3... (400µm) ⇒ MOA4, NOA3T, HOA4 (330µm) ⇒ MOB6, MOA8, MCS8, MOB6 (250µm) ⇒ MOB10 (200µm)
- The simplest way to reduce thickness is to remove the module from the equation and make a direct connection between the chip and the antenna



DBond[™]Chips

- High Frequency
 - ✓ Vigo™
 - ✓ Fujitsu MB89R119
 - ✓ Seos[®]
 - ✓ iCLASS[®]
 - ✓ EM NF4 8K
 - ✓ MIFARE[®] EV1 1K
 - ✓ P60D080
 - ✓ SLE78CLX1600
 - ✓ EM4233
 - > New platforms coming...


- Low Frequency
 ✓ EM4102/4200
 - ✓ EM4102/4
 - ✓ Q5
 - ✓ ATA5577
 - ✓ HITAG S
 - ✓ EM4166
 - ✓ EM4450
 - ✓ Prox



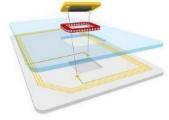
Summary on DBond[™] Technology

- DBond[™] is the best way to connect RFID chips to copper wire antennas
- Allows miniaturized or special form factors
- Enables manufacturing of extra thin inlays for trouble-free "direct to card" printing or additional security layers
- High reliability due to:
 - Smallest possible number of connections
 - Robust heat/pressure welding process
 - Immune against bending (small chip size)
- Optimal RF performance due to Cu wire antenna
- Proven technology for LF and HF

Dual Interface

Dual Interface cards vs smart card

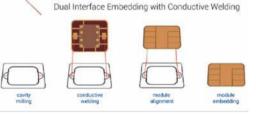
- Card's body: need to have integrated inside of it an antenna which will allow RFID communication of the chip
- Module: need to be able to be connected to the antenna inside the card body:
 - Physically thanks to connection pads on the back side of the module or
 - By RF thanks it's own antenna which will resonate with the booster which will be in the card body
- Then you need to connect both
 - Physically
 - By coupling
- Pictures of some of the existing modules from front & back:



Technologies of connections:

Without any specific equipment's vs contact cards:

- ACF:
 - Use of Anisotropic Conductive Films instead of standard adhesive to stick the module to the card body
 - This film have particle within its structure which will do the connection between the antenna and the module
 - Need to have the antenna close to the top of the cards as it needs to be revealed during P1 milling
 - Can use all DI modules from the market
 - Known suppliers of tape: Dexterials, Tesa
 - Antenna technology used: Cu Pads (making milling easier) or wire pads
- Coupling technology
 - No physical contact between the module & the antenna
 - Need to use special modules which have their own antenna
 - Antenna can be Cu wire embedded or etched (in case of etched usually substrate is PET which then require special attention on adhesion between the layers of the card body)
 - Require accuracy of module / antenna positioning which can be challenging bigger the format is
 - Known suppliers of modules: IFX with CoM, SPS


Source: Infineon website

Technologies of connections:

With additional specific equipment's vs contact cards:

- Need to have a special cavity made during milling with 3 levels:
 - Std P1 for adhesion of the module to the card body & P2 to give space to the chip & it's globe top
 - Small additional holes on sides of P2 with deepness in between P1 and P2 are made, milling the copper allowing to make a physical connection between the module & the antenna.
 - Conductive material is added on the back side of the module and/or in those 2 small cavities
 - Adhesive is stick on the back side of the module letting free the connections area on the back side of the module
 - Antenna technology: commonly used: wire pads technology, possible also to use Cu pads technology
 - This process allow to use any standard DI modules available in the market
- Suppliers & technology available:
 - TeConnect Mühlbauer using Flex Bump technology
 - Conductive glues from Delo
 - DMEX from NBS
 - …
- Others process such as soldering is possible, but so far only used in far east factories

Prelaminate Details

Prelaminate Specification Details

- Material: PVC, PETG, PC others and mix upon request, development in progress for towards material with neutral impact to the environment
- Color: White, Clear your specific pantone possible with volume
- Packaging:
 - HF: DBond[™] technology or all standard modules
 - LF: exclusively DBond[™] technology
 - UHF: Single smart loop | Flip chip on etched antenna
 - Dual Interface: Not applicable supply of antenna only (*Designed for your* own Ics|OS & application requirements)
- Dimensions:
 - Maximum Length: 770 mm
 - Maximum Width: 630 mm
- Single antenna size as per application needs (From the mini cards to XXL card's size)

Prelaminate Specification Details Cont.

- Standard protocol support: ISO 15693, ISO 14443, ISO 10373/7810, CQM
- Manufacturing sites with ISO9001:2015, ISO 14001:2015 & CQM certifications for dual interface & contactless prelaminates.
- Printing marks available upon request (registration, traceability)
- Thickness: See table on next slide
- Card format: See table on following slide

Prelaminate thickness table

Material	PVC	PVC	PVC	PVC	PETG	PETG	PETG	PC	PC	PC
Product type	HF Module 330µm	HF Module 250µm	HF DBond™	Dual Interface antenna	HF Module 330µm	HF Module 250µm	HF DBond™	HF Module 330µm	HF Module 250µm	HF DBond™
Min. Thickness	395+/-25µm [15.6mil]	320+/-30µm [12.6mil]	175+/-20µm* [6.9mil]	150+/-20µm [5.9mil]	380+/-30µm [15.0mil]	320+/-30µm [12.6mil]	195+/-20µm* [7.7mil]	365+/-30µm [14.4mil]	310+/-30µm [12.2mil]	200+/-20µm* [7.9mil]
Thickness over module	Max 450µm	Max 380µm	N.A.	N.A.	Max 430µm	Max 380µm	N.A	Max 430µm	Max 350µm	N.A
Std Color	W hite Clear	W hite Clear	W hite Clear	W hite Clear	White	White	White	White	White	White
Antenna Technology	Wire embedding	Wire embedding	Wire embedding	Wire embedding	Wire embedding	Wire embedding	Wire embedding	Wire embedding	Wire embedding	Wire embedding

* Depends on chips used

Card format table

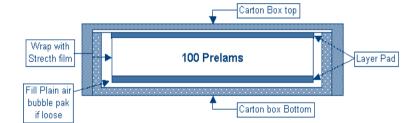
(Indicative table – prelaminate made to customized size as requested)

Common names	Specified size (mm)	Specified size (inch)		
ID-1 / CR-80	85.6 x 53.98	3.370 x 2.125		
ID-2	105.0 x 74.0	4.134 x 2.913		
ID-3	125.0 x 88.0	4.921 x 3.465		

Common thickness	Specified size (mm)	Specified size (inch)		
ISO	0.760	0.030		

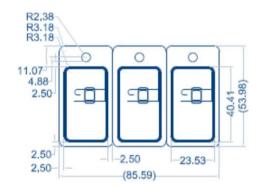
Prelaminate printing

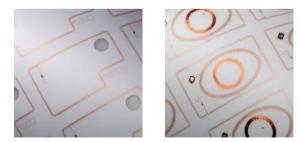
PVC sheet printing for prelaminates is mostly by silk screen or inkjet printing


Standard marking includes:

- Reference marking:
 - Big marks which allow automatic collators sheet's alignment
 - Small crosses for visual alignment references
- Reference corner
- Product description, part number...

Packaging


- The prelaminates are packaged in a box, wrapped in stretch film and topped by a layer pad
 - Small size: 100 sheets/box
 - Queen size: 50 sheets/box
 - King size: 50 sheets/box
 - DI small: 200 to 300 sheets/box
 - DI large: 100 to 150 sheets/box



Custom Solution

- If we don't have it, we can develop it
 - A culture of innovation custom development
 - Knowledge of emerging technology ensures best solutions
 - Proven processes make it easy to do business
 - Engineering expertise assures results that work
- Customizable product range
 - Non-standard formats, electronics and materials
 - Unique form factors

Overlay Details

Overlays with magnetic stripes

Facility in Rastede (Germany), former "CCD" was the "Inventor" of the Tapelayer Machine

- Flush-On Application of:
 - LoCo or HiCo magnetic stripe
 - Paper and Signature Panels
 - Thermo-Rewritable stripe (TRW)
 - Hologram
 - Any other stripes of hot transferable material (holographic magnetic stripes...)

→ This means that the stripe layer is transferred without the polyester carrier and still has a non-abrasive connection.

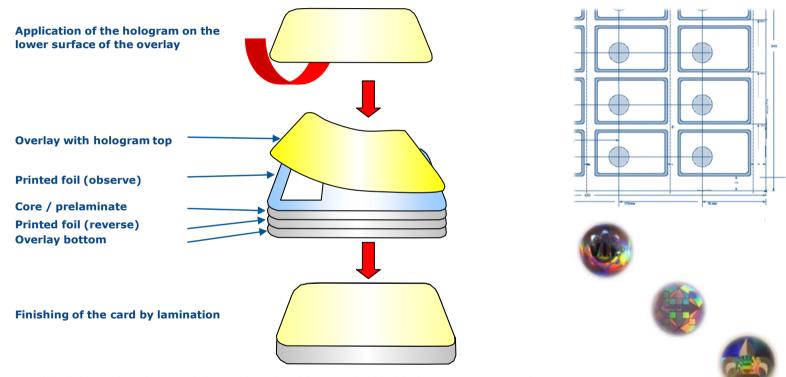
Overlays with stripes

- Materials: PVC, PC, PET-G
 - Thickness from 40µm to 300µm
 - Coated or non-coated
 - Laser engravable or non-laser engravable
- Stripes:
 - Up to 10 stripes
 - As many stripes per row as required (1, 2, 3)
 - Stripe size from min 1.3mm to 21.5mm max
- Delivered in rolls or sheets form.
- Maximum width:
 - 700mm in roll
 - 690mm in sheet

Overlays with holograms

Allow to have the hologram embedded inside the card's body structure insuring highest security

- Materials: PVC, PC
 - Thickness from 50µm to 150µm
 - Non-coated overlays
 - Laser engravable or non-laser engravable
- Hologram:
 - Consigned or provided by us
 - Support on design on demand made with our partners
- Maximum sheet size:
 - 690mm x 540m



Overlays with embedded hologram: card's structure

Details of the various layers of the card made with an embedded hologram on top overlay

Thank you https://www.mcs-group.com.my Chas Yap Managing Director MCS Microsystems Sdn Bhd Kuala Lumpur, Malaysia chas@mcs-group.com.my